PHYSICAL REVIEW E

VOLUME 47, NUMBER 3

Energy of linear quasineutral electrostatic drift waves

Dieter Pfirsch and Dario Correa-Restrepo
Max-Planck-Institut fiir Plasmaphysik, EURATOM Association, D-8046 Garching, Germany
(Received 27 May 1992; revised manuscript received 20 October 1992)

Certain kinds of nonlinear instabilities are related to the existence of negative-energy perturbations.
In this paper, an exact energy expression for linear quasineutral electrostatic perturbations is derived
within the framework of dissipationless multifluid theory that is valid for any geometry. Taking the
mass formally as a tensor with, in general, different masses parallel and perpendicular to an ambient
magnetic field allows one to treat in a convenient way different approximations such as the full dynamics
and restriction to parallel dynamics or the completely adiabatic case. Application to slab configurations
yields the result that the adiabatic approximation does not allow negative energy for perturbations
which are perfectly localized at a mode resonant surface, whereas inclusion of the parallel dynamics
does. This is in agreement with a recent numerical study of drift-wave turbulence within the framework
of collisional two-fluid theory by B. Scott [Phys. Rev. Lett. 65, 3289 (1990); Phys. Fluids B 4, 2468
(1992)]. A dissipationless theory can be formulated in terms of a Lagrangian, from which the energy is
immediately obtained. We start with the nonlinear theory. The theory is formulated via a Lagrangian
which is written in terms of displacement vectors &,(x,?) such that all constraints are taken into account.
The nonlinear energy is obtained from the Lagrangian by standard methods. The procedure used is the
same as that developed in a forthcoming paper by Pfirsch and Sudan [Phys. Fluids B (to be published)]
for ideal nonlinear magnetohydrodynamics theory. From the exact Lagrangian one obtains the La-
grangian of the linearized theory by simple expansion to second order in §,. This Lagrangian then yields
the energy of the linearized theory. People working in this field have hitherto considered only (positive
semidefinite) expressions for the nonlinear energy which do not immediately allow one to investigate the
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existence of linear negative-energy perturbations relating to nonlinear instability.

PACS number(s): 52.35.Kt, 52.35.Mw

I. INTRODUCTION

An impressive numerical study of collisional drift-wave
turbulence was recently published by Scott [1,2] in which
he demonstrated self-sustained turbulence of a linearly
stable plasma slab resembling the plasma edge regions of
tokamaks. His main results are that all features of non-
linear mode structure are determined by nonlinear pro-
cesses, divesting linear stability criteria of their relevance
to that structure, or its amplitude; contrary to the present
common notion in tokamak physics that drift-wave tur-
bulence cannot be the agent behind energy transport in
tokamak-edge regions, many important features of exper-
imentally observed tokamak-edge fluctuations were
reproduced, particularly the amplitude ordering
ed/T>m/n>T/T. The transport is found to be gyro-
reduced Bohm-diffusion-like. In Scott’s study a certain
threshold amplitude is needed. It can, however, even
happen that the nonlinear instability occurs with arbi-
trarily small initial perturbations. This was shown for
the first time in 1925 by Cherry [3]. He presented a sim-
ple example demonstrating that linear stability analysis in
general will not be sufficient for finding out whether a
system is stable or not with respect to small-amplitude
perturbations. His example consisted of two nonlinearly
coupled oscillators, one possessing positive energy, the
other negative energy, and the frequency of one oscillator
was twice that of the other, which means a third-order
resonance. The exact two-parameter solution set he had
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found exhibited explosive instability after a finite time.
Pfirsch [4] considered the corresponding three-oscillator
case and found the complete solution of this problem. It
shows that, except for a singular case, all initial condi-
tions, especially those with arbitrarily small amplitudes,
lead to explosive behavior. This is true of the resonant
case. The nonresonant oscillators can sometimes also be-
come explosively unstable, but the initial amplitudes
must not be infinitesimally small. (Concerning negative-
energy modes and nonlinear instabilities see also [5].)

It is very likely that the results obtained by Scott are
understandable in terms of coupling between positive-
and negative-energy perturbations and that the threshold
amplitude he needed relates to a lack of resonance.

In order to find our whether this conjecture might be
correct, it is necessary to determine the sign of the energy
of drift-wave perturbations. People working in this field
[6], especially Scott [1,2], have hitherto considered only
(positive semidefinite) expressions for the nonlinear ener-
gy, which do not immediately allow one to investigate the
existence of linear negative-energy perturbations relating
to nonlinear instability [3—5]. In this paper we derive the
exact expression for the energy of linear quasineutral
electrostatic drift waves and evaluate it for situations cor-
responding to Scott’s calculations. Contrary to Scott, we
consider a dissipationless theory, which is the only kind
allowing a unique definition of the energy of perturba-
tions. Within such a theory the energy is a constant of
the motion for any initial conditions. Whereas the non-
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linear energy is just kinetic plus potential plus thermal
energy, the energy of perturbations depends on con-
straints. In a multifluid quasineutral electrostatic theory,
from which we start, such constraints are mass conserva-
tion and entropy conservation. The latter is violated if
heat conduction, heat sources (e.g., Joule heating), and
heat sinks play a role. Hence, the energy expressions ob-
tained in this paper are, strictly speaking, only valid for
situations where this is not the case or where these phe-
nomena do not influence the entropy constraint. The
latter is the case if the heat conduction is infinitely large
such that the equilibrium temperature profiles 7',(x) of
the various particle species v are independent of x and
8T,=0. A vanishing temperature perturbation results in
an entropy-conserving theory if one takes the adiabatic
coefficients ¥, =1. This is only possible, however, for the
perturbations; the equilibrium energy would diverge.
When we consider this case, we do it by putting the y’s
equal to 1 only after having obtained the perturbed ener-
gy for general y’s.

In this context, we should like to mention that the
present authors are also investigating the same kind of
problems within the framework of Vlasov-Maxwell
theory, starting from the energy expression obtained by
Morrison and Pfirsch [7]. This theory, of course, au-
tomatically takes heat and momentum transport into ac-
count. They also intend to use the energy obtained by
Pfirsch and Morrison (8] within the framework of
Maxwell and drift-kinetic theory.

Scott had found that it is essential to take into account
the dynamics parallel to the ambient magnetic field for
electrons and ions, whereas the inertial effects connected
with the perpendicular electron motion can be neglected.
We can treat this in our investigation by expressing the
mass of the particles as a tensor with different masses for
the parallel and the perpendicular motion and choose
m, =0. Introducing the mass as a tensor is simply an
artificial measure which facilitates the discussion of
different approximations.

We shall explicitly discuss examples in slab geometry.
We choose T;=v;=0, where v, is the equilibrium flow
velocity of the ions.

II. QUASINEUTRAL ELECTROSTATIC
MULTIFLUID THEORY

A dissipationless theory can be formulated in terms of
a Lagrangian from which the energy is immediately ob-
tained. We start from the nonlinear theory. The theory
is formulated in a holonomous way via a Lagrangian
which is written in terms of displacement vectors &(x,t)
such that all constraints are taken into account. The pro-
cedure used is the same as that developed in a forthcom-
ing paper by Pfirsch and Sudan [9] for ideal nonlinear
magnetohydrodynamics (MHD) theory.

~
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A. The Lagrangian of the nonlinear theory

In this section we prove that the Lagrangian (1) below
yields the exact quasineutral multifluid theory.
Quasineutrality means that there is no electric field ener-
gy term, and, since the magnetic field is even prescribed,
there is no magnetic field energy term either; instead we
have to use the usual coupling terms for charged particles
in electric and magnetic fields. This results in

1 p
L=2Ia’3x Envvv-_m_ R P yvil
eV
—evnv®+7nvvv-A , (1)

where
mV:mVJ__I_-’-(mV"_mVJ_)bb N ]ik=8ik N b:B/.B N (2)
The task is to prove that

t
aftlzL d1=0 (3)

under the constraints of mass and entropy conservation
yields the desired equations of motion. A= A(x) is the
fixed equilibrium vector potential and is not to be varied,
but all other quantities are.

If one introduces displacements £(x,¢), the position of
a plasma element at time ¢, which in the unperturbed sys-
tem is at x at time ¢, is given by

X(1)=x+&(x,t) 4)

(perturbed quantities are denoted by a hat over the sym-
bol; the index v will be suppressed if it is not needed).
The new velocity at the new position is

5% )—d% _dx  9f  |dx
() dt dt + ot * dt VJ§
=v(x,t)+&+[v(x,t)-V]E . (5)

Equation (4) yields the perturbed volume element
d*%=J(x,t)d’x , (6)

where J(x,t) is the Jacobian of the transformation (4).
Mass conservation requires

A(R,)d*X=n(x,t)d’x , (7)
while entropy conservation and Egs. (6) and (7) yield

(X, 1)

P(X,t)=p(x,1) n(x.0)

1
—plx)—L— . 8)
p(x,t) 0T (

Therefore, the Lagrangian of the perturbed system,
namely,
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can be written as
f=2fd3x Tn (X, ) (VX 8)+[V(X,2)-VIELR, 1)+ E(x,0)} - m - (v (X, 8)+[v(x,2)-VIE (x,2)+ & (x,2)]

1 p.(x,1) ~
— —e,n (x,t)P[x+E(x,1),t]

Yo =11 (7 (x,0)]""

+icv—nv(x,t){vv(x,t)+[v,,(x,t)-V]§v(x,t)+§‘v(x,t)}~A(x+§v(x,t))’ ) (10)

Taking into account Egs. (B2) and (B3) derived in Appendix B and the fact that m , is symmetric, and since terms

which can be written as divergences integrate to zero for the perturbations which are considered here, one can write the
perturbed Lagrangian as

- 319 v lenfom |2 .
L L+§fdx{at[n‘,§vmv v,]—n &, m, 3 +(v,-V)v,
I VE G VB T 1 en [$(x 6, — (0]

e e
+Tvnv v, [Ax+E)— A(x)]—&,[(v, V) A(x+E,) ]} + lgat— %"”gvl -A(x+¢E) } (11)
This equation is exact in the perturbations.
Hamilton’s principle, Eq. (3), can now easily be evaluated since
t t t
5[ Ldt=["sLdt= [ LVar, (12)
1 1 1

where LV is the first-order contribution of an expansion of the right-hand side (rhs) of Eq. (11) with respect to the per-
turbations and can be readily determined if one takes into account Egs. (A11), (A14), and (A15). One obtains

v,
—+(vV+V)vV]

d
LY=3 [ o-(nbom v, )=nk m l 5

—(&,Vp,)—e,n 8 D—e n £, Vb+ icv—nvgv-[v,,XB]-i-% le—c”nvg, A] l . (13)

Here, use has been made of the fact that A(x) does not depend on ¢ [in contrast to A(x+&,(x,7))], and of the identity
v, [(E,V)A]—E&,[(v,-V)A]=E, -v,XB. The first and last terms in the expression for L} do not contribute in Eq.
(12), since they vanish after ¢ integration.
The first and last terms in the expression for L") do not contribute in Eq. (12), since they vanish after ¢ integration.
The requirement that the factor of 8'’® must vanish leads to the quasineutrality condition

Se,n,=0. (14)
v
Vanishing of the factor of £, yields the correct nonlinear equations of motion:
9 _ 1
N v +v,V|v,=—Vp+e,n, |E+ ?VVXB ,

(15)
with E=—V®. It is thus proved that the Lagrangian, Eq. (1), is indeed the right one.

B. The Lagrangian of the linearized theory and the wave energy

This Lagrangian is given by L‘?, the second-order contribution of the perturbations to the exact Lagrangian of the
nonlinear theory, Eq. (11). It is determined in a way similar to L?. One obtains
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LO=3 [d% |3 &+, VIE m 16+, VE,]

S VENE T 47,0, 6,1+ 5 Vb, (6 VIE ) —en £, V80— 2o n ££,VV0
leV e’V eV a
3V TE £ TV AT b (v VDAL | 20 g) g, AT a6

The terms involving ¢ and the vector potential A in Eq. (16) can be transformed with the help of the results of Appen-
dix B, Egs. (B4), (B9), and (B10). Taking into account the equilibrium relations

1
E+ pal XB

n,m (v, V)v,=—Vp +e,n, , )]

one obtains the second-order Lagrangian for each particle species in the form

LY = [dx l%nv[éﬂ'(vv'V)Q]'m A€+, VIE]

—3(V-EIE,Vp)+y,p,V-E]—e,n & V8O —1n [(£,V)E]m (v, Vv,

~ o b VP (VVWIV -6+ 30 (1,4 (v, VE,— (6, Vv, IX B £,
+li"_i[n E[(E,V)A]] (18)
2 ¢ ot VY '

Applying Hamilton’s principle to L‘® and varying with respect to 8''’® yields the linearized quasineutrality condi-
tion

>e,V:(n,£,)=0. (19)
v
The linearized equations of motion for the ions and electrons can be obtained by applying Hamilton’s principle to the

second-order Lagrangian of each species, Eq. (18), and varying with respect to £,. An alternative method is to obtain
the linearized equations directly from the nonlinear equations of motion, Eq. (15), with the perturbations 8'® and

én,=—V-(n ), (20)
8v, =&, +(v, V), —(£, Vv, 21
and
op,=—§&,Vp,—v,p, V&, . (22)
With the Lagrangian density corresponding to L(Vz) being denoted by ,L(,,Z), the total energy density e is given by
e=3 év-a—.(vﬂ—ll‘f" : (23)
v og,

The expression for the total wave energy is therefore

6=13 [dx {nv'fv'm vEmn (Ve VIE T m (v, V)EIH(V-E )£,V )+ 7,0,V E,]

+n,[(6,V)E, ] m (v, Vv, + niév'[VPﬁnv_"_l (v Vv, [V-(n E,)

v

eV
———c-nvgv'{[(VV'V)gv-(gv'V)vv]XB} . (24)
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Since & is a constant of the motion, it can be evaluated
in terms of the initial conditions for £, and &,. In partic-
ular, one can find the minimum of & by varying &, and
§"V0. The choice of the initial conditions is, however, not
completely free. One constraint is the linearized
quasineutrality condition, Eq. (19), restricting the possi-
ble £,’s; but also the time derivative of the quasineutrality
condition must be zero, which constrains the &,’s. Also
the second time derivative must vanish. Inserting &, in it
from the linearized equations of motion yields an equa-
tion for 8''’® which, when used in the equations of
motion, allows them to advance &, in time for the next
time step. If the tensors m , are chosen such that certain
components of &£, do not appear in the equations of
motion, further constraints exist. This will be discussed

=1 [ d {n,m& P +(V-E (£ VP )+ 7D V-E.]

in more detail in the examples to come.

C. Adiabatic approximation

This approximation means

m,=0.
We set
m;=m;l

and, like Scott [1,2], we choose in addition
p;=0, v,;=0=—E=0.

The wave energy is then given by

=6 VP V-, ) e £ ([(V-V)E, — (£, Vv, ]XB] | .

If one introduces the current density
j = ee nE ve
and makes use of the equilibrium equation

1.
=-jXB
Vp, o)

and of Egs. (B14) and (B15), the expression for & can then be written as

6= 1 [ @ |mm £ P+ (V-EE VP )+ b V-E ]+ (6.X))-TX(E, XB)

or else as

=1 [ d*x |nm(E P4y ep(V-£ P+ T £ (I X[(B-VIE, — (£, V)B])

’

1951

(26)

(27)

(28)

(29)

(32)

Equation (31) is reminiscent of the ideal MHD energy expression. Note that the last term enters the ideal MHD poten-
tial energy with the opposite sign. The reason for this difference is that there the magnetic field is not a fixed quantity
but is determined self-consistently, which also leads to an additional term (§B)? /8.

The linearized equations of motion for the ions and the electrons can be obtained in the way explained in the previous
subsection by applying Hamilton’s principle to the second-order Lagrangian of each species, Eq. (18). However, for the
adiabatic case with m ,=0 and p; =0, v;=0, it is easier to use the alternative method and obtain the linearized equa-
tions directly from the exact nonlinear equations of motion, Eq. (15). One obtains

. . e .
migi_ _eivs ¢+T§‘ XB

for the ions and

€. : €.
V[ge'vpe+7/epev'§e]_nl [V'(nege)]vpe_eeneva(l)cp_'_ c ne(geXB)+ c ne[(ve'V)ge—(ge'V)ve]XBzo
e

for the electrons.

(33)

(34)

If one takes into account that B-Vn,=0 (which is a consequence of Egs. (29) and (30) and of the adiabatic law

(v,-V)p, /nZV] =0), the parallel component of Eq. (34) yields

(B'V)[ge'vpe+7/epev'§e —eenea(”q)]zo .

(35)
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For a general perturbation &,, this means, if one excludes nonlocal contributions from the £.’s,

1 5p.

s Vp= . + E1=— X 36
on, (8- VP +7ep.V-E.] e, (36)

When this “adiabatic” relation is used in Eq. (34), this equation becomes

e , e
‘Ce—nfBZEeF (V-(n,£.)IBXVp, —[£,-Vp,+v.p.V-§. IBXVn,— TenezBX {[(ve"V)E, —(£,-V)V,]XB]} . (37

As an example, we consider a plasma slab dependent on x only; we choose

Y.=1, T,=T=const, v,=(0,0,v,)=const . (38)

We show that the minimum of & for this configuration is zero for perturbations which are perfectly localized at a mode
resonant surface (k-B®’=0). The equilibrium magnetic field

B=B,(x)e,+B,e, (39)
follows from

VXB=icT£eeneveez , (40)
i.e., from

B!=0, (41)

B}j=—4§-eene(x)ue=5f—jz . (42)

In this case the equilibrium relation is

Vp,= %eeneve XB
1
=— ?eene(x)veBy(x)ex . (43)

The last term in Eq. (32) then yields

%§e~{j><[(B-V)§e—(§e-V)B]} =JTZ§€-[(B-V)(ezX§e)~—-(§e-V)(erB)]

Jz ,
=7§e'[ _ex(B'v§ey)+ey(B'V§ex )+ex§exBy

=%[—§ex(B-V§ey)+§ey(B-V§ex)+B}§§ﬁx] . (44)
Since the equilibrium is independent of y and z, an appropriate ansatz for &,(x,?) is
E,=L[C, (x,t)e™ ™ +LX(x,t)e ~Kx], (45)
k=k,e, tk.e, , (46)
and correspondingly for &;. This yields
Vb, =180 Hike e + (54 —ik-E e T ], @7
(B-V)E, = L(BKIE, (x,1)e™*—£2(x, )0~ %] 48)
Inserting these results in Eq. (32) and subsequently integrating with respect to y and z over a periodicity surface s,
s= :y ﬂ’jz s (49)

yields the wave energy in the form

gkykz=%fdx nimigi'§?+pe|§;x+iky§ey+ikz§ezlz+E%B;(B'k)[gexge*y_é‘:xgey]_'_ﬁ(B)g )zgexg’;x . (50)
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As mentioned in the preceding section, it is possible to
discuss this expression in terms of initial conditions. It
has already been emphasized that the initial conditions,
however, are not completely arbitrary, since the con-
straint of quasineutrality, Eq. (19), is valid at all times. In
terms of the complex displacements §,, the following re-
lations must be satisfied:

=0 (51)

d .
ey o (M) tieyn, (kg

>
and
=0. (52)

d ; . ;
; ey (M) tieyn, (k)

As far as the equations of motion, Egs. (33) and (37), are
concerned, &, and &, can be arbitrarily chosen. &,q,
however is not completely free. This is because the equa-
tion of motion for the electrons is of first order since
m, =0 in the adiabatic approximation. In the case treat-
ed here, with y,=1, T,=const, and v, =v,e,, Eq. (37)
reduces to

. 3 T,
§e.L — U, agzel ‘f?#(é}l'v‘pe )vape . (53)

This equation obviously does not contain either §; or 5”.
In terms of §,, Eq. (53) means

. . B ¢ p. 2
gelzzlkzve BJ; [Bzgey—Bygez]-*_—e—; _: B;Bygex
. By
=lve“B—2[(k'B)§ey—(k'§e)By]
, 12
C D, Te
c. | 7. 52 Brbex - (57)

One could now minimize & Kk Eq. (50) in the usual way,

introducing Lagrange multipliers to account for the con-
straint of quasineutrality, Eqgs. (51) and (52). However,
an easier and more straightforward way which yields the
same results is to minimize & k, kzwithout constraints and

then show, a posteriori, that the constraints can be
satisfied with the minimizing perturbations. This is now
carried out.

In terms of initial conditions, the variation of & Kk,

with respect to ¢ % yields

$i10=0. (58)

Variation of £, yields §,,.o= —i(k+§.0), i-e.,

, 12 . R
H . C % lkzgezo“ gexO lkygey() 4 (59)
e ;i B; (BXe, )E, (54)
and ‘ ‘ which can always be satisfied with k,70.
. . -
£, = —ikv,Coy (55) Variation of {7, yields
. . B, i
ge.Ly=_lkzve?[Bzgey_Bygez] §ex0=?(k~B)§eyo . (60)
5 y
[4 pe: Te
T ;‘ FBzgex Inserting these results in Eq. (50), one obtains
e e
B s
=—ive—Biz[(k-B)é‘ey~(k'§e)By] (56) (é’kykz)min=—~1—6;fdx(k-B)2|§eyo|2- (61)
;12
_ < |Pe Ie_ B.C,. , With these results, the quasineutrality conditions. Egs.
e |p. | B> 777 (51) and (52) are, respectively,
J
Z[ev( nvgva), + ievnv(k'gvo)] =ei(ni§ix0), +ieini(k'§i0) +eene:§ex0+eene §2x0+ ieene(kygey0+ kzgez())
v
=e;(n;&;0) tien;(k-§o)te.n,6,0=0 (62)
and
Z[ev(nvévx )I+ievnv(k'§v)]=eene'§.ex0+eene§'ex0+ieene(k'eB )§e||0+ieene(k'§e10)=0 . (63)

Since £; does not appear in the expression for & k, kz,g i
can always be chosen in such a way that Eq. (62) is
satisfied. . .

In Eq. (63), {,,0 and &, are determined by Egs. (55)

[

and (54) as functions of &, &,,, and {,,. ée"O is complete-
ly arbitrary and can always be chosen so as to satisfy Eq.
(63) with the single exception of the points at which
(k-B)=0. At these  points, however Eeoxo
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=£! o= §e1y0 £.1,0=0 follows from Egs. (55)-(57), (59),
(60), and (63) is also satisfied.

(é"kykz )min» EQ. (61), is thus also the minimum of kakz
under the constraint of quasineutrality. In order to com-
pare with the results of the nonlinear numerical calcula-
tions for drift-wave instabilities, with &;, given by the
drift approximation, we now consider localized perturba-
tions, but still with &; arbitrary, which means &,,=0 in

order to minimize & kK, whereas in the usual theory of
drift instabilities &, is approxnnated by the drift motion.
We take x =0 as being a resonant surface and consider
perturbations which are localized there and have
k-B(0)=k-B”=0. Let €, be a small number which de-
scribes the localization width 2x,, €, ~2x,. If the per-
turbations were perfectly localized, then the energy densi-
ty would exactly vanish, [( é’kykz )min]/[s€,]=0. But the
perturbations have some extent across the resonant sur-
face, and since [k-B(x)]2=[kyB}:(O)]2x2+ - -+, one only
has [( 6kykz Jmin]/[5€, ]=0 because

(65 i min~ — [k, By OV [° dxx?|E, 0l
kykz min 167T[ yPy ] —x XX gey()

-~ Gi —0. (64)

The energy density [(kakz)min]/[sex] behaves as €.

This is in contrast to the case with included parallel elec-
tron dynamics. That case, considered in the next section,
yields [ka k, 1/[s€, ] finite.

Since Egs. (61) and (64) were derived without the addi-
tional constraint imposed on {;, by the drift approxima-
tion, (& Kk, Jmin Tepresents a lower bound for the

(6 Kk, )min Which one would obtain by taking that con-

B

61k, =g J dx fmmiCu i+ nim, [¢ ¢+

’ . . i !’
+pe ‘gex +lky§ey +lkz§ez |2+ };By(B'k)[gexgt:y _é-:xgey ]+

The term k,{,, can be eliminated from this equation if
one takes into account relation (69), which leads to

’

e, n
Cow T iky Gy ik obe == Ty (72)

Variation of &, , with respect to & flo yields
y“z

i0=0 . (73)
Variation with respect to ¢3 leads to
¢o=0 (74)

in the limit of large ion mass, which means that
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straint into account. Owing to the large ion mass, it
seems reasonable to assume that also in the case of the
drift approximation a large positive contribution from
the ion inertia to the energy can only be avoided if § i1=0.
This can be shown if one considers that, in the drift ap-
proximation, &;, is given by

£, = éBXVS“’(D (65)

[this follows from Eq. (33) to leading order in an expan-
sion in (1/9;)/90/9t, where Q;=e;B/m;c is the ion
gyrofrequency]. For the example considered here, with
y.=1,8V® is given by

6(1)¢=L

e

]. (66)

In terms of complex displacements and potential, with

8D =1[¢(x,t)e®*+¢*(x,t)e k], (67)
Egs. (65) and (66) mean that
Q=§Bx[¢'ex +igk] (68)
and
=L e e yrinkee, (69)
ee ne

respectively. The contribution of &;, to the energy is then

2
.. B
nm&; -6 =n, ”EXk

m,—zz‘ [¢’¢'*+ ¢¢*] ) (70)

The energy in the drift approximation is therefore given
by

2
¢¢*]
1 1\2 *
(By)Eenlh | - (71)
[
T, I L N S (75)
g ek | T TRy

where R,; is the ion gyroradius.
As a consequence of Egs. (66), (67), and (74), one now
has

V:[n.£,]=0, (76)

instead of V-£,,=0, which one obtained with &, com-
pletely free.

Subsequent variation of & kK, with respect to £, then
yields, if the equilibrium relation, viz. n,=p,/
T,=—(1/47)(B,B,/T,) is taken into account,
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Eoo=—— By (k-B)¢
ex0 2‘”_ (B}: )2 ne,z ey0
+eT,
2 n,
=L 1 (kB0 an
B] 1 B}
87 p,

[in contrast to Eq. (60)] and

trality condition, Eq. (52) can be satisfied by choosing the
free §e"0 for (k-B#0), and that it is trivially satisfied for
k-B=0.

The dependence of (& Kk, )arife min ON k-B is the same as

in Eq. (61).

D. Parallel dynamics

The last subsection has shown that the thermal energy
alone does not lead to negative energy for perturbations

1
(& kyk, )drift min = — 1; f dx 372 which are perfectly localized at a mode resonant surface,
™ 1 _B_y_ where k-B/®=0. We therefore now take the parallel
87 p, electron dynamics into account and consider the same
) ) equilibrium of the preceding section, y,=1, T=T,
X (k-B)?[& 0 (78) =const, v, =(0,0,v,)=const, p; =v,; =0.
[in contrast to Eq. (61)]. The masses are now
As' i'n Eq. (62), it can be shown that the qua.sineutrality m;=ml, m,=0, m,=m, . (79)
condition, Eq. (51) can be satisfied by choosing the free
Cio- It is also straightforward to show that the quasineu-  In this case the energy, Eq. (24), is
J
1 .
—1fd x[n m; (gl) +n me§e|| neme(ve'V§e|l)2+pe(v'§e)2+:§e'{.lx[(B‘V)ge'—(ge'V)B]} . (80)
Proceeding in a way similar to that in the previous section, one obtains the energy in the form
S . . . . " .
gkykz = —8— fdx [nimigi §f +neme§elf§ :H *neme(k've )Zé-e"g:” +pe |§ex +lk'§e |2
i ' 1 ,
+;(k'B)By[gexggy—é‘:xgey]+—2—';;__(By )2§2x§:x . (81)
[
One can now show that both positive- and negative- ERE
energy perturbations are possible, and that quasineutrali- |§6”0|2— — e, (kXB)]?
ty is satisfied. A simple discussion is again possible in B
terms of initial conditions. We choose la O]2
, . =——(k,B,—k,B, 2, (88)
$i0=0, &;,p=0 (correspondingly , ¢,=0), (82) B
la ol
E.o=ag(x)e, Xk , (83) lge,,olz— L (kXB)]?
s . |ao [2
Seo=do(x)e, Xk . (84) o (k,B,—k,B,) (89)
Therefore one gets and
. . 2
Eex0=bex0 =0, k-beo=k£,0=0, ®5 é’k,k,:% [ dx n,m, kX% {laol*—(k,v,?laol?)
and
Vlo=Cx0=0, (n.&eo) t+ink-§,,=0 (86) ©0
, (n in,k-£,,=0 .
€0 Sex0 e>ex0 e 20 At the mode resonant surface, [kXB®]?
=[kB©12—(k-B'?)? =[kB'®]2. For localized perturba-

The conditions for quasineutrality, Egs. (51) and (52), are
obviously satisfied.
The expression for the energy reduces to

kakz=% fdxneme“éenolz_(kzve )2|§e||012} . (87)

Since k XB=(k,B, —k,B, Je,, one then obtains

tions with localization width 2x,~¢€,, the energy density
& « /s€, remains finite for vanishing €,
y©z

ék k 0
z 1 X .
—seyx ~ Toxg k? f_xO dx n,m,{lagl*—(k,v,)?la,l?} ,

91)
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in contrast to the adiabatic case, where it vanishes as ei.

Since @, and a, can be presribed independently of each
other, one can have both positive- and negative-energy
perturbations. This situation is similar to the Cherry os-
cillator case. The configuration considered should there-
fore allow nonlinear instabilities. A possibly necessary
threshold amplitude will depend on the degree of reso-
nance present in the initial conditions.

As concerns negative-energy modes, which are neces-
sarily stable, their frequencies must obviously satisfy
2

Q1 <1, (92)

k,v

z7e

III. SUMMARY

An exact energy expression for linear quasineutral elec-
trostatic perturbations has been derived within the frame-
work of dissipationless multifluid theory that is valid for
any geometry. Taking the mass as a tensor with, in gen-
eral, different masses parallel and perpendicular to an
ambient magnetic field allowed us to treat the full dynam-
ics, but also to restrict consideration to parallel dynamics
only or to the completely adiabatic case. Application to
slab configurations yields results in agreement with
Scott’s [1,2] numerical study within the framework of
collisional two-fluid theory. Arguments were given that a
comparison with such a theory is reasonable. The result
is that in plane geometry the adiabatic approximation
does not allow negative energy for perturbations which
are perfectly localized at a mode resonant surface,
whereas inclusion of the parallel dynamics does. This
might, of course, be different with other kinds of
configurations, but parallel dynamics, as pointed out by
Scott, should always play an essential role.

APPENDIX A: PERTURBED QUANTITIES

In this appendix, the quantities J, (x,1), @(x+§,t),
and A(x+§&), which appear in the perturbed Lagrangian,
Eq. (10), are calculated by the same method as in Ref. [9]
to second order in the perturbations. For this purpose,
we use the expressions for the perturbed position and
volume element, Eqs. (4) and (6), respectively, and take
into account the constraints imposed by mass and entro-
py conservation, Egs. (7) and (8), respectively.

It is convenient to introduce the normalized density N

JUT=1—(y = DV-E+ Ly — D{—V-[E&V-E)+V-[(E:VIE]} + Ly (y —1(V-£).
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by defining

_ R&,t)

NE, )= ) (A1)
n(x,t)

Expansion of N(X,¢) with respect to £(x,?) in the argu-

ment yields

NE,1)=N(x,1)+&VN(x,t)+L1EEVVN(x, )+ - -,
(A2)

with §§:VV=§i§j(82/ax,-axj) in Cartesian coordinates.
The perturbed normalized density at the original position
can be expressed in terms of the displacements and is
given by

N(x,t)=1+8VN(x,0)+ 18P N(x, )+ -+, (A3
2
with 81N given by the well-known expression
8''N=—V-[NE],
(A4)
S(I)NNzlz_v_g
and 8'”’N by
8PN=8D[8VN]. (A5)
8'VE is defined as
8VE=E(x,1)—E&(x,1) , (A6)

which , since the new displacement at x is the old dis-
placement at x—&(x,1), i.e.,

E(x,t)=E(x—E(x,1),t) , (A7)
yields
8VE(x,1)=—[E&(x,1)-V]E(x,1) . (A8)

It is now easy to calculate the Jacobian J(x,¢), which ap-
pears in the expression for the perturbed Lagrangian L.
It follows from Egs. (6), (7), and (A1) that

J(x,t)=—==——=N(%,1)"! (A9)
R T NN}
Up to second order in the displacements, this yields
J=1+V-£+L{V-[E(V-E)]—V-[(§-V)E]} (A10)
and
(A11)

The perturbed electric potential at the new position, <'f>(x+§ ,t), can be similarly calculated. Up to second order, one

has

B(x+E,1)=B(x,1)+ (£ V)B(x,1)+ LEEVVD(x,1)
and

&(x,0)=0(x)+8 "0+ 18P0 .

Therefore one gets

(A12)

(A13)
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B(x+£,1)=(x)+8VD(x)+ (£ V)D(x)+ (£ V)8V D(x) + 16PD(x)+ LEEVVD(X) . (A14)
The vector potential at the new position is (also up to second order)

A(x+&)= A(x)+(§-V)A(x)+1EE:VV A(x) . (A15)
There are no 8 A terms since A is prescribed (fixed). Also, A does not depend explicitly on time.

APPENDIX B: USEFUL RELATIONS TO TRANSFORM THE PERTURBED
LAGRANGIAN AND THE WAVE ENERGY

The expression for the perturbed Lagrangian, Eq. (10), can be put in a convenient form by means of the relations de-
rived in this appendix.

Taking into account the equation of continuity, i.e.,

n,+V-«(n,v,)=0, (B1)
it is easy to verify the relations
ln v, m," —a~+(v V) |€ =9 [ln v, m, & ]+V{ln [v, m, &, ]v }-—ln vV—I-(v Vv, |'-m,-& (B2)
2 vV —vV at v v at 2 VIV —vV v 2 v vV —V v v 2 v at v v —_V v
and
| 24y +E)=2 | & A(x+E,)
n, ot v, gv A(x § - ot ¢ nvgv ) X gv

€y
T[é_v' A(x+§v)]nvvv _nvgv'[(vv'V)A(X"""gv)] . (B3)

Further relations are useful to transform the Lagrangian of the linearized theory, Eq. (16):

3’
1 . =1 . g
Tevnvgvgv'vv(b zevnvgwgvj axiax'
_ 3 |1 3P |1 P 9&,; a®
ax,- 2 €, vgwgw ax 2 e, a ; vgvz §vj axj 7 vnvgvi axi axj
=V-[3e,n (8, VPIE,]— 3£, VPIV-(n,£,)—5e,n,[(§,V)E ] VD, (B4)

V-{[€, (v, XB)]n £} =[8, (v,XB)]V-(n,§,)+n (£, V)£, (v,XB)]
=[§,(v,XB)]V: (nV§V)+n [(&-V)E,]-(v,XB)
+n.8,{[(§,VIV,]XB}+n,8,{v,X[(§, V)B]}, (B5)
VA&, [ V) Aln v, ]={£, [(§,- V) AN}V (n,v,)+1n, (v, V){£,[(§,V)A]
={E,[(E,VIANV-(n,v,)+n,[(v, - VIE][(E,V)A]+n &, {(v,-V)(E, V)A]} , (B6)

)
Iw

n &y (VX [(E, VOBl =n 8.8, |v, X 7

:nvgvgvi vy XV X _a_A

= _A —(v.-7)2A
—nvgvgvi v V., const. a (vv V) axi ]
A Sy Y Y V)——A—
V vj vi V a a vov vi a
32A JA JdA
vév}gw v Ax a nvgv' (vv'V) [gvi axi ] +nv§v v ng axi ]

=n,v, (6,6, VVA]=n £ {(v,.VI(§, V)A]} +n.E,

dA
(v, VE,) S ] : (B7)

i
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0A | _ . . e 1 9A

nvé_v (V ngt a nvgv {[(VVV)gv] ei} axi
—_— — _a.___A . --—————aA .
=n €, { (v, V)E,]X e X g |+ (8 o, e,]

= 1,6 [V, VIEIXB) +n, (v, VIE - 2

l

=—n,8 {{(v VI IXBY +n,[(v, V)E,]-[(£,V)A] . (B8)

Adding Egs. (B5), (B7), (B8), and substracting Eq. (B6) yields, after a further simple manipulation,

e
3 M EETY A= 6 (v, V6, AL = 3 V(v X B £, — (£,1(6,V) AL, v,)

1 eV 1 e‘V

— 3 IV XB) (6, VE) 5 (£, (v, XB)IV(n,£,)
1e,

36 ([, VE,~ (£,9)v,]XB)
1¢é,

toy 6 VANV (n,y,) (B9)

The last term of this equation can be transformed as follows, taking the equation of continuity into account:
16y
52 Bl VANV (n,v,)

v

1e¢€ .
—5 6 L&V AL,

:lii{n E (& .V)A]]_e_" i[n EL-(& .V)A+_l__ein {g -[(& -V)A]—g-[(g.‘ ‘V)A]}
2 c at vav v c at vaov v 2 c v v v v v

=_1_e_i{ E, (€, V }_e_" ~§—[n E]|-(& -V)A+l£1n (€, [(E “V)A]—(&,V)E <A1}
2 c a v v v c at vov v 2 c v v v v v,const

=le_._a_{ I3 -V)A]}—El i[n £ -V)A—lin /3 -(£,XB) (B10)
2 c a ‘V v v c at vov v 2 c vav v N

The expression for the wave energy of the cases considered (v; =0, Vp; =0, E=0) can be put in a convenient form by
using the following relations. If one introduces the current density j,

j=e.n,v, , (B11)
then

V-j=0 (B12)
follows from the equation of continuity for the equilibrium electrons, V-(n,v,)= —r, =0. Making use of the equilibri-

um equation
Vpe=%j><B, (B13)

one derives



eV
;L(Ee'vpe WVe(neg )= —n £ {[(Ve-VIE, = (£, V)V, ] XB]

It
o =

Il

A= o= o=

(£, XB)-VX(§,Xj)

I

and

%(ge XJ)-VX(E, XB)=~£, [ X VX (£, XB)]

S
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[§e-(j><B)]V~§e+—ci—[ge-(ij)](ge-Vne%—%ge- (j-V)§e~(§e-V)j+;1—(§e-Vne i | xB

(8. XB):[—jV-§ +(j-V)E, — (£, V)j]

V-[(§er)X(§e><B)]+~z-(§eXj)-VX(é‘eXB) (B14)

.- {iX[(B-V)§, —(£,-V)B]—(jXB)V £}

£ {IX[(B-V)§, —(&,-VIB} —(£.-Vp, )V &, . (B15)

[1] B. D. Scott, Phys. Rev. Lett. 65, 3289 (1990).

{2] B. D. Scott, Phys. Fluids B 4, 2468 (1992).

[3]1 T. M. Cherry, Trans. Cambridge Philos. Soc. 23, 199
(1925); see E. T. Whittaker, Analytical Dynamics (Cam-
bridge, London, 1937), Sec. 182, p. 142; and A. Wintner,
The Analytical Foundations of Celestial Mechanics (Prince-
ton University Press, Princeton, 1947), Sec. 136, p. 101.

[4] D. Pfirsch, Z. Naturforsch. Teil A 45, 839 (1990).

[S]P. J. Morrison and M. Kotschenreuther, Reports No.
DOE/ET-53088-280, IFSR 280, 1989, Institute for Fusion

Studies, The University of Texas at Austin, Austin, TX
78712.

[6] M. Wakatani and A. Hasegawa, Phys. Fluids 27, 611
(1984).

[71P. J. Morrison and D. Pfirsch, Phys. Fluids B 2, 1105
(1990).

[8]1 D. Pfirsch and P. J. Morrison, Phys. Fluids B 3, 271
(1991).

[9] D. Pfirsch and R. N. Sudan (to be published).



